Machine learning in virtual screening.

نویسندگان

  • James L Melville
  • Edmund K Burke
  • Jonathan D Hirst
چکیده

In this review, we highlight recent applications of machine learning to virtual screening, focusing on the use of supervised techniques to train statistical learning algorithms to prioritize databases of molecules as active against a particular protein target. Both ligand-based similarity searching and structure-based docking have benefited from machine learning algorithms, including naïve Bayesian classifiers, support vector machines, neural networks, and decision trees, as well as more traditional regression techniques. Effective application of these methodologies requires an appreciation of data preparation, validation, optimization, and search methodologies, and we also survey developments in these areas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Virtual Screening of the Drug Protein with a Few Crystal Structures Based on the Adaboost-SVM

Using the theory of machine learning to assist the virtual screening (VS) has been an effective plan. However, the quality of the training set may reduce because of mixing with the wrong docking poses and it will affect the screening efficiencies. To solve this problem, we present a method using the ensemble learning to improve the support vector machine to process the generated protein-ligand ...

متن کامل

The Review of Virtual Screening Techniques

Effective treatments extend lives in the world, and significant efforts are in place to expand the use of life-saving medications in the developing world. This paper gives an overview of drug discovery process and emphasises in the area of virtual screening. Because machine learning is fast becoming a popular mechanism to support activity recognition in drug discovery process and other real-wor...

متن کامل

Evaluation of different machine learning methods for ligand-based virtual screening

In silico High Throughput Screening of large compound databases has become increasingly popular technology of finding valuable drug candidates, by applying a wide range of computational methods, such as machine learning [1]. In recent years, many comparative studies of different machine learning methods performance in ligandbased virtual screening have been reported [2,3]. In order to extend th...

متن کامل

Calibrated Boosting-Forest

Excellent ranking power along with well calibrated probability estimates are needed in many classification tasks. In this paper, we introduce a technique, Calibrated Boosting-Forest1 that captures both. This novel technique is an ensemble of gradient boosting machines that can support both continuous and binary labels. While offering superior ranking power over any individual regression or clas...

متن کامل

Learning Deep Architectures for Interaction Prediction in Structure-based Virtual Screening

We introduce a deep learning architecture for structure-based virtual screening that generates fixed-sized fingerprints of proteins and small molecules by applying learnable atom convolution and softmax operations to each compound separately. These fingerprints are further transformed non-linearly, their inner-product is calculated and used to predict the binding potential. Moreover, we show th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorial chemistry & high throughput screening

دوره 12 4  شماره 

صفحات  -

تاریخ انتشار 2009